Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Molecules ; 27(16)2022 Aug 18.
Article in English | MEDLINE | ID: covidwho-2023936

ABSTRACT

Aspergillus flavus and Aflatoxins in grain crops give rise to a serious threat to food security and cause huge economic losses. In particular, aflatoxin B1 has been identified as a Class I carcinogen to humans by the International Agency for Research on Cancer (IARC). Compared with conventional methods, Surface-Enhanced Raman Scattering (SERS) has paved the way for the detection of Aspergillus flavus and Aflatoxins in grain crops as it is a rapid, nondestructive, and sensitive analytical method. In this work, the rapid detection of Aspergillus flavus and quantification of Aflatoxin B1 in grain crops were performed by using a portable Raman spectrometer combined with colloidal Au nanoparticles (AuNPs). With the increase of the concentration of Aspergillus flavus spore suspension in the range of 102-108 CFU/mL, the better the combination of Aspergillus flavus spores and AuNPs, the better the enhancement effect of AuNPs solution on the Aspergillus flavus. A series of different concentrations of aflatoxin B1 methanol solution combined with AuNPs were determined based on SERS and their spectra were similar to that of solid powder. Moreover, the characteristic peak increased gradually with the increase of concentration in the range of 0.0005-0.01 mg/L and the determination limit was 0.0005 mg/L, which was verified by HPLC in ppM concentration. This rapid detection method can greatly shorten the detection time from several hours or even tens of hours to a few minutes, which can help to take effective measures to avoid causing large economic losses.


Subject(s)
Aflatoxins , Metal Nanoparticles , Aflatoxin B1 , Aflatoxins/analysis , Aspergillus flavus , Edible Grain/chemistry , Gold/pharmacology , Humans
2.
Sci Total Environ ; 789: 147876, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1240611

ABSTRACT

Governments may relax physical distancing interventions for coronavirus disease 2019 (Covid-19) containment in warm seasons/areas to prevent economic contractions. However, it is not clear whether higher temperature may offset the transmission risk posed by this relaxation. This study aims to investigate the associations of the effective reproductive number (Rt) of Covid-19 with ambient temperature and the implementation of physical distancing interventions in the United States (US). This study included 50 states and one territory of the US with 4,532,650 confirmed cases between 29 January and 31 July 2020. We used an interrupted time-series model with a state-level random intercept for data analysis. An interaction term of 'physical distancing×temperature' was included to examine their interactions. Stratified analyses by temperature and physical distancing implementation were also performed to analyse the modifying effects. The overall median (interquartile range) Rt was 1.2 (1.0-2.3). The implementation of physical distancing was associated with a 12% decrease in the risk of Rt (relative risk [RR]: 0.88, 95% confident interval [CI]: 0.86-0.89), and each 5 °C increase in temperature was associated with a 2% decrease (RR: 0.98, 95%CI: 0.97-0.98). We observed a statistically significant interaction between temperature and physical distancing implementation, but all the RRs were small (close to one). The containing effects of high temperature were attenuated by 5.1% when physical distancing was implemented. The association of COVID-19 Rt with physical distancing implementation was more stable (0.88 vs. 0.89 in days when temperature was low and high, respectively). Increased temperature did not offset the risk of Covid-19 Rt posed by the relaxation of physical distancing implementation. Our study does not recommend relaxing the implementation of physical distancing interventions in warm seasons/areas.


Subject(s)
COVID-19 , Humans , Physical Distancing , SARS-CoV-2 , Temperature , United States
3.
Int J Infect Dis ; 102: 247-253, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1059688

ABSTRACT

BACKGROUND: To evaluate and compare the effectiveness of four types of non-pharmaceutical interventions (NPIs) to contain the time-varying effective reproduction number (Rt) of coronavirus disease-2019 (COVID-19). METHODS: This study included 1,908,197 confirmed COVID-19 cases from 190 countries between 23 January and 13 April 2020. The implemented NPIs were categorised into four types: mandatory face mask in public, isolation or quarantine, social distancing and traffic restriction (referred to as mandatory mask, quarantine, distancing and traffic hereafter, respectively). RESULTS: The implementations of mandatory mask, quarantine, distancing and traffic were associated with changes (95% confidence interval, CI) of -15.14% (from -21.79% to -7.93%), -11.40% (from -13.66% to -9.07%), -42.94% (from -44.24% to -41.60%) and -9.26% (from -11.46% to -7.01%) in the Rt of COVID-19 when compared with those without the implementation of the corresponding measures. Distancing and the simultaneous implementation of two or more types of NPIs seemed to be associated with a greater decrease in the Rt of COVID-19. CONCLUSION: Our study indicates that NPIs can significantly contain the COVID-19 pandemic. Distancing and the simultaneous implementation of two or more NPIs should be the strategic priorities for containing COVID-19.


Subject(s)
COVID-19/prevention & control , SARS-CoV-2 , Humans , Masks , Physical Distancing , Quarantine , Time Factors , Travel
4.
Sci Total Environ ; 757: 143783, 2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-939257

ABSTRACT

Novel corona virus disease 2019 (COVID-19), which first emerged in December 2019, has become a pandemic. This study aimed to investigate the associations between meteorological factors and COVID-19 incidence and mortality worldwide. This study included 1,908,197 confirmed cases of and 119,257 deaths from COVID-19 from 190 countries between 23 January and 13 April, 2020. We used a distributed lag non-linear model with city-/country-level random intercept to investigate the associations between COVID19 incidence and daily temperature, relative humidity, and wind speed. A series of confounders were considered in the analysis including demographics, socioeconomics, geographic locations, and political strategies. Sensitivity analyses were performed to examine the robustness of the associations. The COVID-19 incidence showed a stronger association with temperature than with relative humidity or wind speed. An inverse association was identified between the COVID-19 incidence and temperature. The corresponding 14-day cumulative relative risk was 1.28 [95% confidence interval (CI), 1.20-1.36] at 5 °C, and 0.75 (95% CI, 0.65-0.86) at 22 °C with reference to the risk at 11 °C. An inverse J-shaped association was observed between relative humidity and the COVID-19 incidence, with the highest risk at 72%. A higher wind speed was associated with a generally lower incidence of COVID-19, although the associations were weak. Sensitivity analyses generally yielded similar results. The COVID-19 incidence decreased with the increase of temperature. Our study suggests that the spread of COVID-19 may slow during summer but may increase during winter.


Subject(s)
COVID-19 , China , Cities , Humans , Humidity , Incidence , Meteorological Concepts , SARS-CoV-2 , Temperature
5.
Sci Total Environ ; 737: 140348, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-610882

ABSTRACT

The novel coronavirus disease 2019 (COVID-19), which first emerged in Hubei province, China, has become a pandemic. However, data regarding the effects of meteorological factors on its transmission are limited and inconsistent. A mechanism-based parameterisation scheme was developed to investigate the association between the scaled transmission rate (STR) of COVID-19 and the meteorological parameters in 20 provinces/municipalities located on the plains in China. We obtained information on the scale of population migrated from Wuhan, the world epicentre of the COVID-19 outbreak, into the study provinces/municipalities using mobile-phone positioning system and big data techniques. The highest STRs were found in densely populated metropolitan areas and in cold provinces located in north-eastern China. Population density had a non-linear relationship with disease spread (linearity index, 0.9). Among various meteorological factors, only temperature was significantly associated with the STR after controlling for the effect of population density. A negative and exponential relationship was identified between the transmission rate and the temperature (correlation coefficient, -0.56; 99% confidence level). The STR increased substantially as the temperature in north-eastern China decreased below 0 °C (the STR ranged from 3.5 to 12.3 when the temperature was between -9.41 °C and -13.87 °C), whilst the STR showed less temperature dependence in the study areas with temperate weather conditions (the STR was 1.21 ± 0.57 when the temperature was above 0 °C). Therefore, a higher population density was linearly whereas a lower temperature (<0 °C) was exponentially associated with an increased transmission rate of COVID-19. These findings suggest that the mitigation of COVID-19 spread in densely populated and/or cold regions will be a great challenge.


Subject(s)
Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , China , Cities , Humans , Meteorological Concepts , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL